Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 374(6572): 1271-1275, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855492

RESUMO

Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter­close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury's interior.

2.
Astrobiology ; 13(9): 793-813, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24015759

RESUMO

A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.


Assuntos
Meio Ambiente Extraterreno , Planetas , Planeta Terra , Astros Celestes
3.
Philos Trans A Math Phys Eng Sci ; 369(1936): 582-93, 2011 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-21220282

RESUMO

Our exciting time allows us to contemplate the moment in the not-too-distant future when we can detect the presence of life on worlds orbiting stars other than our Sun. It will not be easy and will require the development and use of the very latest technologies. It also very probably demands deployment in space of relevant instrumentation in order to carry out these investigations. The European Space Agency has been involved in the studies and development of the required technologies for more than a decade and is currently formulating a roadmap for how to achieve the ultimate detection of signs of life as we know it on terrestrial exoplanets. The major elements of the roadmap consist of the following. First, the search for and detection of terrestrial exoplanets. Here, some progress has been made recently and is reported in this paper. Second, the more and more detailed study of the physical characteristics of such exoplanets. Finally, the search for biomarkers--indicators of biological activity--that can be observed at interstellar distances. The last is probably one of the most difficult problems ever contemplated by observational astronomy.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Objetivos , Órgãos Governamentais , Europa (Continente) , Planetas
4.
Astrobiology ; 10(1): 5-17, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307179

RESUMO

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets-particularly, their evolution, their atmospheres, and their ability to host life-constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus approximately 300 BC: "Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist." Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts-atoms-also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning-not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than 6 our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21(st)-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years.


Assuntos
Atmosfera , Vida , Planetas , Projetos de Pesquisa , Sistema Solar , Humanos , Fatores de Tempo
5.
Astrobiology ; 10(1): 1-4, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307178
6.
Astrobiology ; 10(1): 19-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307180

RESUMO

To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method). With time and improved detection methods, the diversity of planets and orbits in exoplanetary systems will definitely increase and help to constrain the formation theory further. In this work, we review the latest state of planetary formation in relation to the origin and evolution of habitable terrestrial planets.


Assuntos
Gases , Planetas , Sistema Solar , Fatores de Tempo
7.
Astrobiology ; 10(1): 33-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307181

RESUMO

The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).


Assuntos
Sistema Solar , Júpiter , Planetas
8.
Astrobiology ; 10(1): 77-88, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307184

RESUMO

After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO(2). CH(4) was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO(2) plus H(2) to CH(4), may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.


Assuntos
Atmosfera/química , Clima , Evolução Planetária , Sistema Solar , Oxigênio/química , Ozônio/química , Fotossíntese , Planetas , Luz Solar , Raios Ultravioleta
9.
Astrobiology ; 10(1): 69-76, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307183

RESUMO

The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.


Assuntos
Evolução Biológica , Vida , Planetas , Meio Ambiente , Íons , Sistema Solar
10.
Astrobiology ; 10(1): 89-102, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307185

RESUMO

We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M(Earth)) (so-called "super Earths"), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context.


Assuntos
Planetas
11.
Astrobiology ; 10(1): 45-68, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307182

RESUMO

The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.


Assuntos
Evolução Planetária , Magnetismo , Planetas , Radiação , Atmosfera/análise , Meio Ambiente , Água/análise
12.
Astrobiology ; 10(1): 103-12, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307186

RESUMO

We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets. Using the Darwin All Sky Star Catalogue (DASSC), we discuss the selection criteria, configuration-dependent subcatalogues, and the implication of stellar activity for habitability.


Assuntos
Planetas
13.
Astrobiology ; 10(1): 113-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307187

RESUMO

The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?" This main theme is addressed through further questions: 1) How do gas and dust give rise to stars and planets? 2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers)? 3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earth-like planets.


Assuntos
Sistema Solar , Planetas
14.
Astrobiology ; 10(1): 121-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307188

RESUMO

We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms.


Assuntos
Previsões , Análise Espectral/métodos
15.
Science ; 322(5901): 558-60, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18948534

RESUMO

Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.

16.
Astrobiology ; 7(1): 85-166, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17407405

RESUMO

The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.


Assuntos
Astronomia , Planetas , Fenômenos Astronômicos , Evolução Planetária , Exobiologia , Meio Ambiente Extraterreno , Simulação de Ambiente Espacial , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...